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PATH INTEGRALS AND SPACETIME SYMMETRIES

M. Béhm and G. Junker®

Physikalisches Institut der Universitit Wiirzburg, Am Hubland, 8700 Wirzburg, FRG

Applications of group theoretical methods in the path integral formulation of the quantum propagator are
considered. The local spacetime symmetry of the Lagrangian is utilized for the path integration. Two examples are

discussed explicitly.

1 INTRODUCTION

Since Feynman’s space-time approach to non-relati-
wistic guantum mechanics the path integral method has
become a very important technique in quantum theo-
ries [1]. In this talk we present a method for the ex-
plicit path integral treatment based on the spacetime
symmetry of a given problem. The local spacetime
symmetry of the Lagrangian leads to an expansion of
the short-time propagator in matrix elements of uni-
tary irreducible representations of the space symmetry
group. The path integration is performed using the or-
thogonality of the representations. Two examples are
considered. Firstly, we discuss the free propagation of
a non-relativistic particle in an n-dimesional space of
constant negative curvature. Secondly, we will perform
the path integral for a spinless relativistic particle in
(n + 1)-spacetime dimensions discribed by the Hamil-
tonian H = c/p? + m?c?. Both exact results are com-
pared with the semiclassical approximation.

2 GENERAL FORMULATION

According to Feynman the propagator of a quantum
system may be obtained as a path integral [1]. In n-
dimensional flat space (Euclidean or pseudo-Euclidean)
the path integral is usually given in a sliced time basis

K(r,T) = lim f H deHdPJ (2mh)™" (2.1)

7=1 i=1

x exp {(i/B)(p;A%; — eH(pj, x;))} .

Here r stands for the geodesic distance the system has
propagated during the time T from x; to x;. The
notation is t; = o + je, € = T/N, x; = x(§;),
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AXJ = X; — Xj-1, X; = x(tﬂ), Xy = x(tN) and simi-
larly for p. Performing the p-integration we find
N-1
K(r,T)= lim / H dx; HK (x5,Xj-1,€). (2.2)

j=1

The explicit form of the short-time propagator depends
on the Hamiltonian and is given, e.g., for H = p?/2m 4
V(x) by

K(x;,%j_1,€) = (m/2mihe)"/?
x exp { & (3208, ~ Vexy)e) }
and for H = c/p? + m2c? by [2]

(2.3)

Bl
2
K(xj,Xjo1,) = 2ice (5o (e — (Axy)) 0/
x Kns)j2 ((imc/h) e - (Ax,-)z) .
(24)
Let G be a transformation group acting on the space
M as x = D(g)a, ¢ € @, x,a € M. DW(g) is
an n-dimensional representation of G in M. Now we
choose a fixed vector a in M. Any point x; may be ob-
tained from a through a transformation x; = D™}(g;)a.
Identifying the coordinates of x; with group parame-
ters of g; we change the volume element dx; on M into
the normalized Haar measure dg; of G, dx; = |M|dy;,
where | M| stands for the volume of M for compact
groups. If G is non-compact | M| follows from the iden-
tity [, dx = |M| J; dg. Note that thisis a formal equa-
tion. In general M may be viewed as & group quotient
M = G/H where H is the stability group of a. There-
fore, a multiplication by 1 = [ dh; is implied.
According to the transformation, the short-time
propagator may be considered as a function over the
group manifold of G. The propagation from x;_; to
x; corresponds to a transformation by g;g;}, in the
group manifold. We set K(x;,x;_1,€) = K(¢7},9;,¢),



260 M. Béhm, G. Junker [ Path integrals and spacetime symmetries

which can be expanded into a complete set {£} of uni-
tary irreducible representations in Hilbert space. Note
that we may multiply each ¢g; by an arbitrary ele-
ment of the stationary group H from the right, x; =
Dn(g;h;)a = D"(g;)a. Obviously the short-time
propagator is (even locally) invariant with respect to
left and right multiplication of the subgroup H. Choos-
ing a basis with (a|D(g)la} = D&(¢), the Fourier de-
composition of the short time action reduces to an ex-
pansion in zonal spherical functions [3]:

K(g:119;.€) 2: de fo(e) Dool9i2195),
fie) = [ K(g,¢) Dig'(s) d.

The path integration may now be performed by using
the orthogonality

/G Dio(9:2497) Dholg;  gin1) dg; =

(2.5)

6(!3;8’) D§ (9,_19'_-;+1)1
7]

. (2.6)
where §(£,£) = &4 for discrete and §(£ — ¢') for contin-
uous £. Explicitly we have

K(r,T) = Yexp {~(i/ W) BT} (6/|MI)Dils"9v)

= Zexp{ (¢/R)E;T} Z—-:1 o (%)W n (%),
" (2.7)

where

Ey = ik|M|£i(0), Tem(x) =/de/IM|Dpo(g) (2:8)
are the energy spectrum and normalized wave functions,
respectively.

3 EXAMPLES

In the following we will discuss two examples within
the above formalism. Firstly, we will consider the mo-
tion on a negatively curved space in n dimensions.
This space may be viewed as a connected subspace
of the group quotient SO(n,1)/SO(n). Similar as
S* = SO(n + 1)/S0(n) is a space of constant posi-
tive curvature. Secondly, we will perform the path in-
tegral for the Klein-Gordon propagator in n space di-
mensions. The transformation group of R™ is the Eu-
clidean group in n dimensions E* = T"® S0(n) and
R" = E*/S50(n) =~ T™.

3.1 The Free Particle in a Space of Constant
Negative Curvature

The line element ds of a uniform curved space with
negative curvature K = —1/R? is

ds? = (1 + 1'2/}2“’)_1 dr? +.ridi. (3.1)

This geometry can be embedded in an (n + 1)-dim. flat
Minkowski space by setting [4]

z° = Rcoshy, x = Rsinhy &, ds? = —dz°? + dx?,
(32)
where sinhy = r/R, x € [0,00). We may identify
the embedded surface with a ”"time-like” hyperboloid in
(n + 1)-dim. Minkowski space. Therefore,the Feynman
ansatz for the propagator on a negative curved space
reads [3,5]

K(nT) = g o, f Hh(y,-lg,,e) 1T 1Midgs,

i=1
K(g;219i:€) = ( 32/27”716)
x exp {~(imR?{he) (1 + DG g52490) }

(3.3)
with | M| = 2r{"+1)/2/T(28). For the Fourier decom-
position of the short-time propagator only the continu-
ous fundamental series £ = —221+4p, p > 0 of 5O(n, 1)
does contribute [3], where

de = 2T((n — 1)/2 + ip)*/[IDGR)PT(n)]

and
_ () (2mBN\Y? [ imR? mR?
fl(s)_zwfﬂ‘*’l)/? mike | TP he K the J
(3.4)
Note that f3(0) = (p? + 1/4)A/2imR%. The energy

spectrum is, after fixing the energy scale to E;, = 0,
E, = h*p?/2mR?. Using the explicit form of the zonal
spherical functions in terms of Gegenbauer functions
one may obtain the energy-dependent Green function
[the Fourier transform of {3.3)] in closed form after
lengthy calculation [6]:

G(r, E) = (me*™/nh?) (—27&'R2 sinh(r/R))(z‘")fi

xQUy73(cosh(r/R)),
(3:5)
where ¢ = 0 (1/2) for n odd (even) and v =
vV2mR2E fh. The propagator is given by

[ m \1/2 _1 d 12
(rnT) = (27réﬁT) 27 R sinh(r/R) dr

x exp {(i/R)S.}, for n odd,

3/ _1 d (n—2)/2
K(r,T)=+2R (2 hT) (21rRsinh{r/R) E;)

y ./‘°° texp {imRi?/2KT}
/R \/cosh t — cosh(r/R)

dt, for n even,

(3.6)
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where Sy = mr2/2T is the classical action. For n = 2
and 3 above results have already been obtained by
Gutzwiller [7]. For n = 1 and n = 3 the semiclassi-
cal approximation is exact. Taking the flat space limit
R -3 oo the propagator reduces to the standard result.
Finally we would like to mention that in the calculation
of (3.5) it is crucial to consider the usual regularization
E — E 416, 6§ > 0, explicitly in order to obtain the
correct result. This point has not been taken carefully
in a recent calculation by Grosche and Steiner [8]. In-
deed they have implicitly used the regularization E —£§
leading to an unphysical result.

3.2 The Klein-Gordon Propagator

As a second example we have chosen the relativistic
propagator of a spinless particle in n space dimensions.
The short-time propagator for this problem has al-
ready been given in Section 2. Here the transformation
group is the n-dimensional Euclidean group being the
semi-direct product of translations and rotations, & =
T"® 50(n). Taking a to be the origin, the stationary
groupis H =8 O(n The corresponding zonal spheri-
cal functions DE,(g) = T(n/2) (2/kr)" /2 J(ﬁ_g)/g(kr)
depend only on the distance r = |x| from the ori-
gin, x = D"W(g)a [9]. The Fourier coefficient is found

to be fi(e) = exp {—(‘i/iﬁ,)zsq/mzc2 + h2k7} and d; =

k"=t f[2"17"™/2T(n/2)]. Note that the Lebesque mea-
sure in R* is identical with the measure on G/H ~ T
and therefore |[M| = 1. We immediately read off the
energy spectrum E; = c(m?c? + ﬁ2k2)1/2. As fi(e) is
an exponential with exponent linear in ¢ the short-time
propagator and the finite-time propagator are of the
same form (r = |x; — x;|):

K(n“)/g(imczT/ﬁ'y).
(3.7)
In the above we have set v = [1 — r?/c*T?" V2 = [1 -
v?/c?)~1/2, Using the asymptotic expansion for small A
we obta.in the interesting representation

mry ) (n+1)/2

K(r,T)=2icT (2 2T

K(r,T) = v (my/2rihT)"* exp {(i/h)Su}
X oFo(—n/2,(n + 2)/2;ihy/2mcET),

(3.8)
where S; = —mc?T'/v is the classical action. For the
unphysical values n = —2 and 0 the hypergeometric

function in (3.8) becomes unity and the semiclassical
approximation (A — 0) is found to be exact. Formula
(3.8) explicitly demonstrates the equivalence of the clas-
sical (A — 0), large-time (T — o0), and non-relativistic
limit {¢ — oco).

4 DISCUSSION AND OUTLOOK

Spacetime symmetry is certainly an important point
to be considered in quantum theories. In this talk we
have presented an alternative way for the path inte-
gration on symmetric spaces. The symmetry has been
incorporated into the formalism and found to be very
useful for the expilcit path integration. However, this
technique is not limited to spacetime symmetries but
may also be applied to problems having a dynamical
symmetry ( e.g. SU(2) or SU(1,1)) [3,10]. Even to
quantum field theories this method is applicable. For
example, in lattice gauge theories the path integral is
performed over the gauge and matter fields. They may
also be changed into group integrals according to the
above treatment.
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